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Abstract

When using an optical non-contact scanning system to measure an object that has a large surface, large curvature, or a full 3603
pro"le, one can acquire only one set of sectional measurement points each time. For reconstructing the entire object, every set of
sectional measurement points acquired at di!erent positions must match. Therefore, the optimal shape error analysis for the matching
image of two or more sets of sectional measurement points is desired. This paper presents a measurement system that combines two
CCD cameras, one line laser and a three-axis motion stage. It forms an optical non-contact scanning system in association with the
mathematical method of direct shape error analysis for the use in reverse engineering. This analysis and measurement system can be
used for the pro"le measurements of free-form objects. It analyzes the matching image of a free-form surface with high e$ciency and
accuracy. The validity and applicability of this system are demonstrated by two practical examples. � 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Optical non-contact scanning measurement systems
have been widely used in reverse engineering for rapid
product prototyping in recent years. Because it is #exible
and quick, it can be used for pro"le measurement of
objects with complex surfaces. However, when measuring
an object that has a large surface, large curvature, or
a full 3603 pro"le, one can acquire only one set of sec-
tional measurement points in each measurement. For
reconstructing the entire object, every set of sectional
measurement points acquired at di!erent positions must
match. Therefore, the optimal shape error analysis for the
matching images of the same area for two sets of sectional
measurement surfaces is desired.
Some approaches for registering and building three-

dimensional (3-D) models from multiple range images

have been developed in recent years [1}7]. However, the
goal of the new approach is to develop an algorithm that
has high e$ciency and accuracy. In general, there is no
existing absolute reference surface when matching every
set of sectional measurement surfaces. Therefore, this
study has determined the "rst set of sectional measure-
ment surfaces to be a matching reference surface. In this
article, an analysis and measurement system is proposed.
It combines an optical non-contact scanning measure-
ment system using two CCD cameras with a direct shape
error analysis approach. This system can be used for
the pro"le measurement of a large object and can analyze
the matching image of a free-form surface with high
e$ciency and accuracy.

2. Triangulation measurement

The principle of triangulation measurement with one
camera is shown in Fig. 1. In the "gure, P(x, y, z) is a point
in the world coordinate (X,>,Z) and P�(u, v) is its focused
point in the image plane (;,<). According to the geomet-
rical optics and similar triangles, the coordinates of point
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Fig. 1. The principle of triangulation measurement.

Fig. 2. Schematic diagram of the proposed optical scanning measure-
ment systems.

P(x, y, z) can be calculated by
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where f is the focal length, � is the angle between the
X-axis and light direction, and b is the distance between
the light source and the lens's optical center O.
From Eqs. (1) and (2), we can get
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Triangulation measurement is one of the popular
measurement techniques. It has advantages in fast
computation and easy operation. However, it possesses
disadvantages in complicated calibration of system para-
meters and tedious system set-up. In practice, inaccuracy
in system parameters and system set-up will induce large
measurement errors.

3. The optical non-contact scanning measurement system

In principle, the one CCD camera system can grab
the projected line image on the surface and "t a free-form
line at a time. Having scanned the whole image, the
entire free-form surface pro"le of the object can be con-
structed. In practice, the one CCD camera cannot always
successfully capture the line image at each position be-
cause the inspected surface may have steep slopes and
protruded pro"les. In order to solve this problem, this
study developed a measurement system using two CCD
cameras to collect image information. The cameras are
located on both sides of the laser diode so that more
image information is obtained and compensated for the
loss of data that resulted from using only one CCD
camera. Fig. 2 shows the schematic diagram of the con-
structed scanning measurement system. The optical de-
tector is composed of two CCD cameras and a line laser
diode, and is mounted on a linear stage. As the laser
diode projects a laser stripe onto the object, the two CCD
cameras detect the deformed laser line image simulta-
neously. Between the two image data collected the clearer
one will be stored. By stepping the optical detector to
prescribed positions, a series of deformed line images can
be collected. Consequently, the entire image information
for an object is acquired using this optical scanning
system.

3.1. System set-up for parameters calibration

Fig. 3 shows the experimental set-up for the CCD
system. A laser strip is projected onto the standard
template, and the CCD cameras detect the line image.
The template was made using a laser writer with 1 �m
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Fig. 3. Experimental set-up for parameters calibration.

accuracy of line spacing. Since the distance between each
horizontal line on the standard template is known, the
intersection point between each horizontal line and verti-
cal laser line stripe indicates the (>,Z) coordinate of the
space plane. The standard template is successively moved
step-by-step along the Z-axis direction. The CCD
cameras can grab the image of those points with respect to
several space planes, respectively. The two-dimensional
(2-D)-measurement information in the image plane can
be transformed into its space position using the least-
squares mapping algorithm described as follows.

3.2. Coordinate mapping principle

Let (>
�
,Z

�
) be a coordinate of the standard template

in the space position, and (;
�
,<

�
) be the corresponding

coordinate in the image plane. Then, a mapping algo-
rithm can be established using the least-squares poly-
nomial function [8].
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From Eqs. (6) and (7), one can obtain the related space
coordinate for each measurement data on the image
plane. The corresponding space coordinate (>,Z) for
each pixel position (;,<) of the laser beam image in the
CCD plane can be determined. Hence, the entire pro"le
can be formed by the integration of the scanned data.

4. The direct shape error analysis method

The construction of the surface measurement points
can be determined by several approaches [9}12]. This
paper adopted the bicubic uniform B-spline interpolation
approach to describe the "rst set measurement points,
and to reconstruct multiple surface patches. These mul-
tiple bicubic B-spline patches must pass through all
measurement points of the "rst set and match their
boundaries with C� and C� continuity. Therefore the
accuracy in this surface reconstruction step is guaran-
teed. The shape error of the matching image of the
free-form surface in this paper is de"ned as the maximum
value of the nearest distances from the second set
measurement points to the reference (the "rst set) surface.
Obviously, the objective function of shape error analysis
is the sum of the squared nearest distances. In general, an
iterative method algorithm for "nding the nearest dis-
tance is widely used [16]. This method is, however, time
consuming and tedious for "nding the convergence solu-
tion. Zhang [13] proposed iterative algorithm for "nding
the closest point for registration of free-form curves and
surfaces. Bergevin et al. [14] employed least-squares es-
timation to minimize the nearest distance. Eggert et al.
[15] adopted k}d tree algorithm for searching the closest
point. Ho [19] employed Powell's iterative searching
method to "nd the corresponding point in the reference
surface having the shortest distance from each of the
second set measurement point. This algorithm is called
the inverse method. In this study, an improved algorithm,
which is called the direct method, was proposed.
For "nding the nearest distance between the second set

measurement points and the reference surface, the direct
method solves the intersection between the reference sur-
face normal vector and the second set measurement point
directly. Fig. 4 shows the direct method concept for
"nding the nearest distance. Based on this concept, a
detailed algorithm of the direct method is described as
follows:
Let q

��
"[x

���
, y

���
, z
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]� be the measurement points

of the second set, and p
��
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, y
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, z
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]� be the para-

metric representation point of the ijth B-spline patch in
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Fig. 4. The direct method concept for "nding the nearest distance.

Fig. 6. The initial mapping of two-sectional measurement data using
coordinate translations and rotations.

Fig. 5. Two sets of sectional measurement data for a car model with
a complex surface taken from di!erent measurement angles.

the reference surface. Then the nearest distance between
the second set measurement point and the reference
surface can be determined by solving the following two
non-linear equations:
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Using the Newton}Raphson Method [17], the solution
to the above equations can be determined by solving the
following matrix equations. The process is repeated until
the deviation converges to a required value.
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From the direct method description, one can realize that
the computing time for "nding the nearest distance is
faster than the iterative method. The highlight of this
paper is to use the direct method to "nd the nearest
distance between the second set measurement point and
the reference surface, which reduces the computation
time. From the applied examples, the computing time for

this approach was reduced by about 82}92% when com-
pared with the inverse method.

5. Initial localization and optimization

In general, there is no existing absolute reference point
between the two sets of measurement data when measur-
ing an object. This study determined the initial geometric
matching location of the two sets of measurement data
using human}computer interaction. Fig. 5 shows the two
sets of sectional measurement data of a car model with
a complex surface taken from di!erent measurement
angles. The initial two sets of sectional measurement data
were located using coordinate translations and rotations
as shown in Fig. 6.
When the initial sets were located, the initial shape

error and initial parameters of a rigid-body transforma-
tion of the two sets of sectional measurement data were
obtained. The accuracy of the shape error would certain-
ly not satisfy our requirements. Thus, according to the
direct method, the least-squares method and optimiza-
tion algorithm, an optimal shape error analysis approach
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Fig. 7. The DSEAM #ow chart for the matching free-form surface
image.

Fig. 9. The area for optimal shape error analysis of the matching image
for a large free-form surface.

Fig. 8. The two sets of measurement points of a large free-form surface.

is proposed. It can determine the optimal results of the
matching image. The least-squares method and optim-
ization algorithm are described as follows:
Let (x, y, z,�,�,�) be the parameters of a rigid-body

transformation and d
�
, d

�
, d

�
,2,d



be the nearest dis-

tances between the second set measurement points q
�

(i"1!n) and the reference surface, respectively. The
objective function is de"ned as the sum of the squared
nearest distances.
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where (x, y, z) are the linear translations of a rigid-body
transformation in the three coordinate directions and
(�,�,�) are the angular rotations of a rigid-body trans-
formation with respect to the three coordinate axes. The
shape error analysis of a measured 3-D surface involves
searching for the six variables (x, y, z,�,�,�) so that the
objective function is minimized.
When applying the shape error analysis of a measured

line, the design variables would be reduced to three,
namely (x, y,�). In this study, the DFPM algorithm
(Davidon}Fletcher}Powell Method) was adopted [18].
Based on the construction of a B-spline surface and the
DFPM algorithm, this work developed a computer pro-
gram to analyze the shape error of measured data with
respect to the reference surface. It is called the direct
shape error analysis method (DSEAM). The #ow chart
for the DSEAM is shown in Fig. 7. The slave data is
moved to the blending area of the master data by the
initial variables (x

�
, y

�
, z

�
,�

�
,�

�
,�
�
). The DFPM algo-

rithm then searches the optimum variables so that the
objective function is minimized.

6. Application examples

6.1. Example 1: a large free-form surface

Because the optical detector was mounted on the lin-
ear stage, if the dimension of the object is larger than the
linear stage range, we must divide the object into several
parts and measure it progressively. Fig. 8 shows the two
sets of measurement points for a large free-form surface,
which was divided by two sections between which there
was an unknown overlapping area. The initial two sets of
measurement points were partially matched by approxi-
mation using human}computer interaction. We then se-
lected the blending area for optimal shape error analysis
of the matching image, as shown in Fig. 9. In this case,
there were 793 points in the matching image area.
The optimal shape error results and the optimal para-

meters of a rigid body transformation using the DSEAM
are shown in Table 1. The optimal shape error is
0.3334mm, which is reduced by 7�m when compared to
the initial shape error. Fig. 10 shows an enlarged error
diagram of the line segments at optimal condition. The
selected zone is again enlarged in Fig. 11. Fig. 12 shows
the complete shape of this large free-form surface after
shape error analysis. The computation time was reduced
by about 92% when compared with the inverse method.
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Table 1
The results of optimal shape error analysis of a large free-form surface

DSEAM

Initial set Optimal blending set

x !0.050mm x !0.0482mm
y 35.999mm y 35.9712mm
z 0.010mm z 0.0095mm
� 0 rad � !0.000662 rad
� 0 rad � !0.004135 rad
� 0 rad � 0.001124 rad
Initial shape error 0.3405mm
Optimal shape error 0.3334mm
Computing time 19.430 s

Fig. 10. The enlarged diagram of optimal shape error of selected line
segments.

Fig. 11. The local enlargement of the line segments of optimal shape
error.

Fig. 12. The complete measured shape of the large free-form surface.

Fig. 13. Two sets of measurement points for a car rear-view mirror
case.

Fig. 14. The area of optimal shape error analysis for a car rear-view
mirror case.

6.2. Example 2: a car rear-view mirror case

For an object having large curved surface, the sectional
measurement points will be obtained from di!erent
measurement angles. Fig. 13 shows the two sets of
measurement points of a car rear-viewmirror case, which
were taken from di!erent measurement angles. The

initial mapping of the second set data to the "rst set data
was located using human}computer interaction. The
area for optimal shape error analysis of the matching
image was then selected, as shown in Fig. 14. In this case,
there were 2880 points in the area of the matching image.
Fig. 14, however, shows only a reduced data set.
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Table 2
The results of optimal shape error analysis of a car rear-view mirror
case

DSEAM

Initial set Optimal blending set

x !0.528mm x !0.5303mm
y 50.000mm y 49.8268mm
z 0.200mm z 0.0479mm
� 0.139712 rad � 0.133798 rad
� 0 rad � 0.053395 rad
� 0 rad � 0.005709 rad
Initial shape error 0.6849mm
Optimal shape error 0.4664mm
Computing time 273.925 s

Fig. 15. The line segments of the optimal shape error for a car rear-view
mirror case.

Fig. 16. The local enlargement of the line segments for the optimal
shape error of a car rear-view mirror case.

Fig. 17. The complete measured shape of the car rear-view mirror case.

The optimal shape error results and the optimal para-
meters of a rigid body transformation using the DSEAM
are shown in Table 2. The optimal shape error is
0.4664mm, which is reduced by 219�m when compared
with the initial shape error. Fig. 15 shows the enlarge-
ment of the line segments of the optimal shape error. The
local enlargement of the selected line segments of the

optimal shape error is shown in Fig. 16. Fig. 17 shows the
complete shape of this object. The computation time was
reduced by about 82% when compared with the inverse
method.

7. Conclusions

Optical non-contact scanning measurement systems
have been widely used in reverse engineering for rapid
product prototyping in recent years. Because such
systems are #exible and quick, they can be used for the
pro"le measurement of objects with complex surfaces.
This paper presented a measurement system, which

combines two CCD cameras, one line laser, and a
three-axis motion stage to form the optical non-contact
scanning system associated with the DSEAM. This
measurement system can collect more image information
and compensate for the loss of data that resulted from
using only one CCD camera. This system can execute the
associated analysis for the matching image of a free-form
surface with high e$ciency and accuracy. The validity
and applicability of this measurement system were dem-
onstrated by two practical examples.
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